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Motivating Requirements of Linear Algebra

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 2 / 60



A Consistency check for Linear Algebra

1 Let a,b be two vectors. (Just like you learn in physics, for now).

2 ⟨a,b⟩ = a ⋅ b = ∣a∣∣b∣ cos θ, where θ is the angle between the vectors a
and b.

3 Also, a ⋅ b = a1b1 + a2b2 + ⋅ ⋅ ⋅ + anbn.

4 Also, by Taylor’s series expansion,

cos θ = 1 − θ
2

2!
+ θ

4

4!
− θ

6

6!
. . .

5 So, we have;

(1 − θ
2

2!
+ θ

4

4!
− θ

6

6!
. . .) = (a1b1 + a2b2 + ⋅ ⋅ ⋅ + anbn)√

a21 + ⋅ ⋅ ⋅ + a2n
√
b21 + ⋅ ⋅ ⋅ + b2n
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An Application of Linear Algebra

Reference: Digital Image Matrix Operations by Williams Orenda
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An Application of Linear Algebra

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 0 0
0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 1
1 0 0 0 0 1 0 1
1 0 1 1 1 0 0 1
0 1 0 0 0 0 1 0
0 0 1 1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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An Application of Linear Algebra

1 A Grayscale image of 512 × 480 pixels is represented by a matrix of
order 512 × 480.

2 A color image of 512 × 480 pixels is represented by three matrices of
order 512 × 480. We call these matrices as channels. There are Red,
Green, Blue channels.

3 Now, we do like put the third matrix at first position, and the first
matrix at third position. Hence, the high values of red matrix, now
denotes the high value of blue matrix.
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Building Blocks of Linear Algebra
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Five W’s about Numbers

1 What is a number? Why is it the case that ”1, 2, 3” are numbers,
but ”I” am not?

2 Where does number comes from?

3 Why are numbers required at all?

4 How numbers solve these problems?

5 When we should think about numbers?
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Numbers vs Tuple of Numbers

Field F
1 Two operations +, ⋅.
2 a + b = b + a and ab = ba.

3 a(b + c) = ab + ac.

4 a + (b + c) = (a + b) + c .

5 ∃0 s.t. a + 0 = a.

6 ∀a∃b s.t. a + b = 0.

7 ∃1 s.t. a ⋅ 1 = a.

8 ∀a ≠ 0∃b′ s.t. a ⋅ b′ = 1.

9 0 ≠ 1.

Vector Space V over field F
1 Two operations ⊕,⊙.

2 u ⊕ v = v ⊕ u.

3 u ⊕ (v ⊕w) = (u ⊕ v) ⊕w .

4 ∃0V , s.t. v ⊕ 0V = v .

5 ∀v∃u s.t. v ⊕ u = 0V .

6 ∀α ∈ F ,
α⊙ (u ⊕ v) = (α⊙ u) ⊕ (α⊙ v).

7 ∀α,β ∈ F ,
(α + β) ⊙ v = (α⊙ v) ⊕ (β ⊙ v).

8 (αβ) ⊙ v = α⊙ (β ⊙ v).

9 1F ⊙ v = v .
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Spanning set in 2D Vector Space

1 There is a special car, which goes only up-down.

�

Can you reach anywhere on the 2d plane with it?

2 The car goes up-down, and also left-right.

�⇄

Can you reach anywhere on the 2d plane with it?

3 The car goes up-down, left-right, and also cornerwise.

�⇄��

Can you reach anywhere on the 2d plane with it?
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Spanning Set

Definition

A set of vectors {v1, v2, . . . vk} is said to span the whole vector space V, if
for any vector v ∈ V, there exists some scalers α1, α2, . . . αk ∈ F , such that,

v = α1v1 + α2v2 + ⋅ ⋅ ⋅ + αkvk

This is called a linear combination.
In the previous example, the first set of vectors was not spanning, but the
second and third was.
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Linear Independence

Consider a bird returning to its home. It visualizes the world as a 3d
space.1 For now, let x is the axis straightways, y is the axis sideways, and
z is the axis from top of the sky to bottom of the ground.

1 Suppose the bird knows how to fly straight and sideways. Can it fly
downwards or upwards?

2 Suppose the bird knows how to fly straight and sideways. Can it fly
parallel x = y plane?

1We shall be more clear about what we mean by 3d or 3 dimension
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Linearly Independent Set

Definition

A set of vectors {v1, v2, . . . vk} is said to be linearly independent, if for any
vi , cannot be written as a linear combination of the other vectors in the
set, i.e. one cannot find some scalers α1, . . . αi−1, αi+1, . . . αk ∈ F such
that,

vi = α1v1 + ⋅ ⋅ ⋅ + αi−1vi−1 + αi+1vi+1 + ⋅ ⋅ ⋅ + αkvk

OR A set of vectors {v1, v2, . . . vk} is said to be linearly independent if
there does not exist some scalers α1, α2, . . . αk ∈ F , such that,

0 = α1v1 + α2v2 + ⋅ ⋅ ⋅ + αkvk

where atleast one αi ≠ 0.
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Two Basic Results

Result (Extension of Spanning Set)

If S is a spanning set, then any superset of S is also a spanning set.

Result (Deduction of Independent Set)

If S is a linearly independent set, then any subset of S is also a linearly
independent set.
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Basis of a Vector Space

Definition

A basis of V is a spanning set for V which is also linearly independent.

Exercise
1 Show that, a basis of V is the smallest possible spanning set of V.
2 Show that, a basis is the largest possible linearly independent set.
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The dimension of vector space

Theorem

If B1 and B2 are two bases of a vector space V, then ∣B1∣ = ∣B2∣, i.e. their
sizes are same.

To prove this, let, B1 = {v1, v2, . . . vm} and B2 = {u1,u2, . . .un}. However,
We need another lemma.

Lemma (Replacement Theorem)

There exists vi such that, B
(1)
1 = {u1, v1, v2, . . . vi−1, vi+1, . . . vm}, which is

obtained by including u1 and removing vi , is also a basis.
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Proof of Basis Theorem

Proof.

Assume m ≠ n, we shall use proof by contradiction. Without loss of
generality, m < n.

Consider, replacing u1 to get, B
(1)
1 , which is a basis. Next, replace u2 to

B
(1)
1 to get the new basis, B

(2)
1 .

Continue replacing all elements from B2, until B
(k)
1 is completely filled

with ui ’s only, (i.e. all vi ’s are removed).
But, this final basis is maximal linear independent set, but is a strict
subset of B2. B2 cannot be basis.
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Example 1

Vector space Rn, which is the space of n-dimensional vector.

B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1
0
. . .
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
. . .
0

⎞
⎟⎟⎟
⎠
, . . . ,

⎛
⎜⎜⎜
⎝

0
0
. . .
1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
is the Euclidean basis.
To express an element x ∈ Rn, we use;

x =
⎛
⎜⎜⎜
⎝

x1
x2
. . .
xn

⎞
⎟⎟⎟
⎠
= x1

⎛
⎜⎜⎜
⎝

1
0
. . .
0

⎞
⎟⎟⎟
⎠
+ x2

⎛
⎜⎜⎜
⎝

0
1
. . .
0

⎞
⎟⎟⎟
⎠
+ ⋅ ⋅ ⋅ + xn

⎛
⎜⎜⎜
⎝

0
0
. . .
1

⎞
⎟⎟⎟
⎠

Identify x as the tuple of the coefficients (x1, x2, . . . xn).
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Example 2

Vector space R2, which is the space of 2 dimensional vector with real
elements.

B = {(1,1) , (1,2)}

is a basis.
To express the usual vector x = (4,5), with respect to this basis,

x = (4
5
) = 3(1

1
) + 1(1

2
)

So identify x as (3,1), the tuple of coefficients.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 20 / 60



Application of taking Linear Combinations
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Matrix as a Linear Transformation
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Application of identifying matrix as function
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What is Linear Transformation

Definition

A linear transformation is a function f from a vector space U to a vector
space V, such that;

1 U and V are both vector spaces over same field F .

2 f (αv1 ⊕ βv2) = αf (v1) ⊕ βf (v2), for any α,β ∈ F and v1, v2 ∈ U .
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Examples of Linear Transformation

Example

Let f ∶ Rn → R2 be a function such that,

f (v) =
⎧⎪⎪⎨⎪⎪⎩

(1,0) if there are odd number of positive entries in v

(0,1) otherwise

Is it a linear transformation?

Example

Let f ∶ Rn → R2 be a function such that,

f (v) = [x1
x2

]

where x1 is sum of odd position elements, x2 is sum of even position
elements. Is it a linear transformation?

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 25 / 60



Examples of Linear Transformation

Example

Let f ∶ Rn → R2 be a function such that,

f (v) =
⎧⎪⎪⎨⎪⎪⎩

(1,0) if there are odd number of positive entries in v

(0,1) otherwise

Is it a linear transformation?

Example

Let f ∶ Rn → R2 be a function such that,

f (v) = [x1
x2

]

where x1 is sum of odd position elements, x2 is sum of even position
elements. Is it a linear transformation?

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 25 / 60



What’s so good about it?

Let, f ∶ U → V be a linear transformation. Let, A = {u1,u2, . . .um} be the
basis of U .
Then,

u ∈ U Ô⇒ u = ∑
i

αiui

So,

f (u) = f (∑
i

αiui) = ∑
i

αi f (ui)

Result

To specify a linear transformation, it is just enough to know its action on
the basis.
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Example
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Linear Transformation to Matrix

Now, let B = {v1, v2, . . . vn} be a basis of vector space V. Then, there are
scalars, rij , i = 1,2, . . .m and j = 1,2, . . .n such that,

f (u1) = r11v1 + r12v2 + ⋅ ⋅ ⋅ + r1nvn

f (u2) = r21v1 + r22v2 + ⋅ ⋅ ⋅ + r2nvn

. . . . . .

f (um) = rm1v1 + rm2v2 + ⋅ ⋅ ⋅ + rmnvn

We can now collect all these numbers rij together, so that we get an array
of scalars, with m rows and n columns. This is MATRIX over the scalar
field F , corresponding to the transformation f ∶ U → V with respect to the
basis A and B.
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Generalizing Matrix Vector Product

1 Take u ∈ U , so we have u = ∑i αiui .

2 Now, f (u) = ∑i αi f (ui).

3 f (u) = ∑i αi ∑j rijvj = ∑j ∑i rijαi

4 But we identify a vector by its coefficients with respect to the basis.

5 So, we have the following transformation;

⎛
⎜⎜⎜
⎝

α1

α2

. . .
αm

⎞
⎟⎟⎟
⎠
→

⎛
⎜⎜⎜
⎝

∑i ri1αi

∑i ri2αi

. . .

∑i rinαi

⎞
⎟⎟⎟
⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r11 r21 . . . rm1

r12 r22 . . . rm2

⋮ ⋱ ⋮ ⋮
r1n r2n . . . rmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

α1

α2

. . .
αm

⎞
⎟⎟⎟
⎠

6 f (um×1)n×1 = (Rf )n×mum×1. Note the transpose of matrix.
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Example 1

Example

f ∶ R4 → R2 such that,

f

⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

x1
x2
x3
x4

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
= (x1 + x3

x2 + x4
)

is given by the matrix;

[1 0 1 0
0 1 0 1

]
2×4

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 30 / 60



Example 2

Example

f ∶ R2 → R2 such that,
f (z) = ze iθ

where z ∈ C. The transformation matrix works as follows;

(a
b
) → [cos θ − sin θ

sin θ cos θ
](a

b
)

This type of rotational transformation is denoted by a matrix of special
property, these are called Orthogonal matrices.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 31 / 60



Some more results

Theorem
1 If f ,g are linear transformation with matrices A and B, show that,

(f ± g) has matrix A ±B with respect to same bases.

2 f ○ g has matrix AB, where it denotes the matrix multiplication.

3 f −1, if exists, has the matrix A−1, where AA−1 = I , the identity matrix.

Exercise
1 How does the transformation f ∶ Rn → Rm given by f (x) = x looks

like as matrix? Is it identity matrix?

2 What is the matrix corresponding to the transformation fg , i.e.
(fg)(u) = f (u)g(u).

3 What is the matrix corresponding to f /g? Is it AB−1? or B−1A?
4 What is the linear transformation corresponding to the matrix AT ?

What is corresponding to A⊗B, where ⊗ is the elementwise product.
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Kernel, Null Space and Range

Definition

The kernel or null space of a transformation f is the set
Ker(f ) = {x ∶ f (x) = 0}. That means, the null space of a matrix A is
N(A) = {x ∶ Ax = 0}.

Definition

The range of a transformation f ∶ U → V is the set R(f ) = {f (x) ∶ x ∈ U}.

Exercise
1 If f (x0) = y0, then all solutions to the equation f (x) = y0 is the set

x0 +Ker(f ).
2 Show that, Ker(f ) is a vector space.
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An Interesting Example

Let there are n cities, C1,C2, . . . ,Cn. Between the cities, we have one-way
roads. Consider a n × n matrix R such that,

Rij =
⎧⎪⎪⎨⎪⎪⎩

1 if there is road from city i to city j

0 otherwise

Then, consider square of this matrix.

(R2)ij = ∑
k

RikRkj

A term in the sum is 1 iff there is a road from city i to city j , through city
k . So, (R2)ij is the number of ways to reach city j from city i visting a
city in between.
In other words, (R + R2 + ⋅ ⋅ ⋅ + Rs)ij is the number of ways to reach city i
from city j in atmost s steps.
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Building Row Rank and Column Rank

Consider a matrix A of order m × n.

Definition

Let R(A) denote the span of the row vectors in A. Then, row rank of a
matrix is the dimension of that spanning vector space.

Definition

Let C(A) denote the span of the column vectors in A. Then, column rank
of a matrix is the dimension of that spanning vector space.
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Some Results

Theorem

Row rank ≤ min{m,n}

Theorem

Column rank ≤ min{m,n}

Exercise

Show that, column space of a matrix A = C(A) is same as the range space
R(f ).
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Rank Theorems

Theorem

Row rank = Column Rank

This common value is called Rank of a matrix.

Proof.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 37 / 60



Rank Theorems

Theorem

Row rank = Column Rank

This common value is called Rank of a matrix.

Proof.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 37 / 60



Rank Nullity Theorem

Theorem (Rank Nullity Theorem)

If f ∶ U → V is a linear transformation with corresponding matrix A, then;

ρ(A) + d(N(A)) = d(V)

Proof.

Let, B = {v1, v2, . . . vn} be a basis of V. Some of these form the basis of
R(f ). The rests are like useless fellows.
Enough to show, the number of such useless fellows is same as the
dimension of d(Ker(f ))
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Invertibility and Rank of a Matrix

Theorem

A matrix is invertible if and only if it has full rank, i.e. A n × n matrix is
invertible if and only if ρ(A) = n.

Proof.

Suppose, f ∶ Fn → Fn is the linear transformation corresponding to A.
Let, ρ(A) < n. That means, d(R(f )) < n. So, there is a basis
B = {u1,u2, . . .un−1} of R(f ).
There must be a vector v ∈ Fn such that, B ∪ {v} is linearly independent,
hence is basis of Fn.
But, v does not have a pre-image, as v ∉ R(f ).
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Determinant of a Matrix
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Working on the Determinant

Consider the matrix,

A = [x1 x3
x2 x4

]

That means, it is a transformation from R2 → R2 such that,
(1,0) → (x1, x2) and (0,1) → (x3, x4).
So the unit square goes to the parallelogram given by the side vectors
(x1, x2) and (x3, x4).

Question: What is the area of the parallelogram?
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Determining formula for Determinant

Consider A = [a c
b d

] and proof from Mathematics Magazine, Mar 1985.
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Determinant as Hypervolume

The answer to previous question is det(A) = x1x4 − x2x3.
So, we generalize a concept called Determinant, which is a measure of
the Hypervolume of the Hyperparallelopiped, given by the column vectors
of A.

1 Hence, you cannot think of determinant of non square matrix, since
specifying the Hyperparallelopiped uniquely, you require atleast all n
columns for Rn.

2 If det(A) = 0, then the linear transformation is not invertible. Think
that the linear transformation is squeezing many vectors between two
of its Hyperspace, at a single Hyperplane, which makes it impossible
to retrace back exactly from where these vectors come from.
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Properties of Determinant

1 Expanding by row or expanding by column gives same determinant.
Because volume is independent of our method of expansion.

2 If one row or column is 0, then determinant is 0, as 0V is one side of
the Hyperparallelopiped.

3 Row operation or column operation does not change the volume
(extension to the result that area of any parallelogram supported by
same parallel lines always remain same).

4 det(A−1) = 1

det(A) . Since, if unit cube maps to something of volume

det(A) in range space, an unit cube (or volume) in range space maps
back to something of volume 1/det(A), simple unitary method.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 44 / 60



Properties of Determinant

1 Expanding by row or expanding by column gives same determinant.
Because volume is independent of our method of expansion.

2 If one row or column is 0, then determinant is 0, as 0V is one side of
the Hyperparallelopiped.

3 Row operation or column operation does not change the volume
(extension to the result that area of any parallelogram supported by
same parallel lines always remain same).

4 det(A−1) = 1

det(A) . Since, if unit cube maps to something of volume

det(A) in range space, an unit cube (or volume) in range space maps
back to something of volume 1/det(A), simple unitary method.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 44 / 60



Properties of Determinant

1 Expanding by row or expanding by column gives same determinant.
Because volume is independent of our method of expansion.

2 If one row or column is 0, then determinant is 0, as 0V is one side of
the Hyperparallelopiped.

3 Row operation or column operation does not change the volume
(extension to the result that area of any parallelogram supported by
same parallel lines always remain same).

4 det(A−1) = 1

det(A) . Since, if unit cube maps to something of volume

det(A) in range space, an unit cube (or volume) in range space maps
back to something of volume 1/det(A), simple unitary method.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 44 / 60



Properties of Determinant

1 Expanding by row or expanding by column gives same determinant.
Because volume is independent of our method of expansion.

2 If one row or column is 0, then determinant is 0, as 0V is one side of
the Hyperparallelopiped.

3 Row operation or column operation does not change the volume
(extension to the result that area of any parallelogram supported by
same parallel lines always remain same).

4 det(A−1) = 1

det(A) . Since, if unit cube maps to something of volume

det(A) in range space, an unit cube (or volume) in range space maps
back to something of volume 1/det(A), simple unitary method.

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 44 / 60



Multiplicative Property of Determinant

Theorem

det(AB) = det(A)det(B)

Proof.

Let, f ,g be the linear transformations corresponding to A and B. Also,
the maps go like U → V →W.
An unit cube in U becomes the det(A) volume of Hyperparallelopiped in
V. An unit cube in V becomes the det(B) volume of Hyperparallelopiped
in W.
So, an unit cube in U becomes of volume det(A)det(B) in W, when we
apply f ○ g , whose corresponding matrix is AB.
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Inner Product Space
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Inner Product vs Metric

Inner Product

1 ⟨⋅, ⋅⟩ ∶ V × V → F .

2 ⟨x , y⟩ = ⟨y , x⟩.
3 ⟨ax , y⟩ = a⟨x , y⟩.
4 ⟨x + z , y⟩ = ⟨x , y⟩ + ⟨z , y⟩.
5 ⟨x , x⟩ > 0 ∀x ≠ 0V .

We call
√

⟨x , x⟩ = ∥x∥, the norm of x .

Distance function or Metric

1 d(⋅, ⋅) ∶ S × S → R.

2 d(x , y) = d(y , x).

3 d(x , y) ≥ d(x , z) + d(z , y).

4 d(x , x) > 0 ∀x ∈ S − {0}
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Matrix of Inner Product

1 Inner Product looks like a linear operation, hence there could be a
matrix for it.

2 Since inner product takes two arguments, the matrix would be
multiplied by two vectors to provide its output.

3 Let, B = {v1, v2, . . . vn} be a basis of V.

4 Let, A be a matrix such that,

(A)ij = ⟨vi , vj⟩

Note that, A is symmetric matrix, A⊺ = A.
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Building Inner Product Formula

1 We have, x = (x1, x2, . . . xn)⊺ and y = (y1, y2, . . . yn)⊺.

2 Therefore,

⟨x, y⟩ = ⟨∑
i

xivi ,∑
j

yjvj⟩ = ∑
i

⟨xivi ,∑
j

yjvj⟩

= ∑
i

xi ⟨vi ,∑
j

yjvj⟩ = ∑
i

xi ⟨∑
j

yjvj , vi ⟩

= ∑
i

xi∑
j

yj⟨vj , vi ⟩ = ∑
i
∑
j

xiyj⟨vi , vj⟩

= ∑
i
∑
j

xiAijyj

= x⊺Ay

This A is called the inner product basis matrix. The forms x⊺Ay are
called Bilinear forms.
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Formula Inner Product

1 Let, B be the usual n dimensional Euclidean basis. Let, ei be the
vector with all zeros except a one at i-th position.

2 Define, inner product basis matrix to be identity matrix, as usual.

3 Then,
⟨x , y⟩ = ∑

i

xiδijyj

where

δij =
⎧⎪⎪⎨⎪⎪⎩

1 i = j

0 i ≠ j

Hence, ⟨x , y⟩ = ∑i xiyi .
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Inner Product to Projection

1 Let’s say, you want to find the projection (or the component) of x
that is aligned with e1, i.e. what should be the projection of
(x1, x2, . . . xn) onto (1,0,0, . . .0)?

2 What should be the projection of (x1, x2, . . . xn) onto (α,0,0, . . .0)?

3 What should be the projection of (x1, x2, . . . xn) onto (y1, y2, . . . yn)?
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Inner Product to Projection (Contd.)

1 You want to find projection of x onto y .

2 This means, you extend this {y} to a Orthogonal basis, say,
B = {y , y1, y2, . . . y(n−1)}, where y⊺yi = 0.

3 Then,
x = αy + α1y1 + α2y2 + . . . αn−1yn−1

and αy is the part or component of x in the direction of y .

4 So, you consider;

x = αy + α1y1 + α2y2 + . . . αn−1yn−1
⇒⟨x , y⟩ = α⟨y , y⟩ + α1⟨y1, y⟩ + ⋅ ⋅ ⋅ + αn−1⟨yn−1, y⟩
⇒⟨x , y⟩ = α⟨y , y⟩

⇒⟨x , y⟩
⟨y , y⟩ = α
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Answer to the first question

Now, we go back to the very first question. Why the formula for inner
product gives cosine of the angle between the vectors.

Note that, geometrically, it is easy to see, the projection of x onto y
is x cos θ.

From the discussion before, the projection was αy , and hence,
x cos θ = αy .

Therefore, taking norm and equating,

∥x cos θ∥ = ∥x∥ cos θ = ⟨x , y⟩
⟨y , y⟩∥y∥

and we end up,

cos θ = ⟨x , y⟩
∥x∥∥y∥
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Eigen Values

Subhrajyoty Roy Linear Algebra: An Introduction May 14, 2020 54 / 60



Eigen Value as Projection

In a projection of x onto y , we try to find the best part of x which
can be made parallel to y .

Eigenvalues are kind of projection of a linear transformation. You kind
of retain best parts of a linear transformation, which explains them
most.

Definition

A scalar λ ∈ F is said to be an eigenvalue with corresponding eigenvector
v ∈ V of the matrix A if;

Av = λv

with v ≠ 0.
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Recipe for Eigen values

1 Since, Av = λv , we have, (A − λI )v = 0.

2 That means, d (N(A − λI )) > 0.

3 That means, by rank nullity theorem, ρ(A − λI ) < n, if A was n × n
matrix.

4 That means, (A − λI ) is not invertible.

5 So, det(A − λI ) = 0. Hence, eigenvalues are roots of the polynomial
det(A − xI ) = 0.

Exercise

Find eigenvalues of a diagonal matrix with entries a1, a2, . . . an.

Find eigenvalues of the matrix A = [a b
b c

]
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Decomposition with Eigen values

Let, B be a basis with v1, v2, . . . vn, each of which is an eigenvector, with
corresponding eigenvalue λ1 > λ2 > ⋅ ⋅ ⋅ > λn.
Then,

Ax = A(∑
i

αivi)

= ∑
i

αiAvi

= ∑
i

αiλivi

≈ α1λ1v1 + α2λ2v2 + ⋅ ⋅ ⋅ + αkλkvk

where k << n.
Instead of remembering n2 numbers to specify A, we can simply remember
k(n + 1), numbers (kn for the eigenvectors and k many for eigenvalues).
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Example: Principal Component Analysis

Reference: Math stack exchange.
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Example: Eigen Face (from Sandipanweb Wordpress)
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STAY HEALTHY & STAY SAFE
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